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AbstractÐGenerated realizations of random ®elds are used to quantify the natural variability of geo-
logical properties. When the realizations are used as inputs for simulations with a deterministic model,
it may be desirable to minimize di�erences between statistics of sequential realizations and make the
statistics close to ones speci®ed at generating the realizations. We describe the use of a genetic algor-
ithm (GA) for this purpose. In unconditioned simulations, statistics of the GA-generated realizations
were signi®cantly closer to the input ones than those from sequential Gaussian simulations. Distri-
butions of generated values at a particular node over sequential realizations were close to the normal
distribution. The GA is computationally intensive and may not be suitable for ®ne grids. The sequential
Gaussian algorithm conditioned with GA-generated values on a coarse grid can produce a set of realiz-
ations with similar statistics for the ®ne grids embedding the coarse one. # 1998 Elsevier Science Ltd.
All rights reserved
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INTRODUCTION

Spatial correlation is an important feature of geo-

logical data. To use a knowledge of spatial corre-

lations, geostatistical stochastic simulations are used

that employ some input probability distributions

and semivariograms of geophysical variables and

provide random ®elds of these variables with prob-

ability distributions and semivariograms similar to

the input ones (Deutsch and Journel, 1992). Several

geostatistical simulation techniques are developed

(Gotway and Rutherford, 1994).

Realizations of random ®elds generated with the

existing techniques may have probability distri-

butions and semivariograms that are substantially

di�erent from the input distributions and semivario-

grams. This is considered as an advantage when the

`original statistics are inferred from sparse samples

and cannot be deemed exactly representative of the

population statistics' (Deutsch and Journel, 1992).

However, if the input statistics are considered to be

exact, it is correct to look for an algorithm that

would reproduce accurately the input statistics in

each realization (Deutsch and Journel, 1992). The

latter situation is commonplace, for example, in

subsurface transport simulation studies when the

goal is to estimate mass transport applying a deter-

ministic transport model in a porous media with

preselected statistical properties (Mackay and

others, 1996; Tsang and others, 1996). In this

instance, all realizations of the random ®eld should

have probability distributions and semivariograms

that are close to the input ones. Grindrod and

Impey (1993) generated ®elds having power-law

semivariograms and used a constrained optimiz-

ation technique to obtain ®elds that have given

mean and variance within a speci®ed tolerance.

Their technique involved the use of a random-num-

ber generator and so the generated ®elds were non-

unique. Each realization in an ensemble was a

plausible representation of the `real' ®eld.

Genetic algorithms (GA) became an e�cient

tool for search of optimal solutions in multipara-

metric spaces. The technique originated from the

idea that mimicking evolution can be used to solve

engineering problems (Mitchell, 1996). GA is a

method for moving from one population of

chromosomes (e.g. strings of ones and zeroes, or

bits) to a new population by using a kind of

`natural selection' together with the genetics

inspired operators of crossover and mutation

(Mitchell, 1996). Each chromosome consists of

`genes' (e.g. bits), each gene being an instance of a

particular allele (e.g. 0 or 1). Arrayed binary rep-

resentations of model parameters are used as the

chromosomes in GA when the parameters have to

be optimized to maximize an optimization cri-
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terion. The optimization criteria calculated with

parameters coded in a chromosome de®nes the `®t-

ness' of this chromosome. The selection operator

chooses those chromosomes in the population that

will be allowed to reproduce and on average the

`®tter' chromosomes produce more o�spring than

the `less ®t' ones. Crossover exchanges parts of

two chromosomes, roughly mimicking biological

recombination between two single-chromosome

organisms. Mutation randomly changes the allele

values in some locations in the chromosome. Each

iteration of selection, crossover, mutation and dis-

carding of less-®t chromosomes is called a gener-

ation. Initial chromosomes are selected randomly.

Usually several hundreds of generations produce a

chromosome with good ®tness.

A GA should be used in optimization problems

when the parameter space is large, the response is

not perfectly smooth or is not well understood and

the task does not require a global optimum to be

found (Mitchell, 1996). Genetic algorithms were

successfully used in designing a multiobjective

groundwater monitoring problems (Cieniawski and

others, 1995), in earthquake source parameter esti-

mation (Zhou, Tajima and Sto�a, 1995), in 2D mi-

gration velocity estimation in heterogeneous media

(Jervis, Sto�a and Sen, 1993) and in many other

instances. Genetic algorithms are under continuous

development (Homaifar, Qi and Lai, 1994;

Mitchell, 1996).

Let us consider parameters to be random ®eld

values at the nodes of a grid and de®ne a ®tness in

terms of the closeness of a realization probability

distribution and a semivariogram to the input ones.

Then the problem of generating random ®elds with

accurate reproduction of input statistics becomes

suitable for the application of a GA.

In many studies, a model of the spatial variability

of some parameters of the media is chosen and ran-

dom spatial distributions of the parameters are gen-

erated at nodes of a grid. Sometimes it is desirable

to minimize di�erences among the probability dis-

tribution functions and among the semivariograms

of consecutive generated random ®elds. At the same

time, values of the parameter at the same grid point

need to be allowed to vary randomly among the re-

alizations. In such cases, a control of the accuracy

of statistics of the generated ®elds is needed, so that

the small di�erences among statistics of the random

®elds can be achieved. Traditional geostatistical

simulation techniques do not have a built-in mech-

anism to provide such accuracy control. The pur-

pose of this note is to demonstrate that GA can be

used to minimize di�erences in statistics among gen-

erated random ®elds.

METHODS

Although the general idea of the survival of the

®ttest is common to all genetic algorithms, there are

many versions of GA di�ering in the techniques

used to encode parameters, to select parent chromo-

somes, to perform crossovers and mutations and to

select the ®ttest (Davis, 1991).

We used a FORTRAN version of a genetic algor-

ithm GAFORTRAN version 1.6 written by David

L. Carroll from the University of Illinois*. Nodal

random ®eld values were encoded as N-bit binary

strings, where 2N is the number of intervals between

minimum ymin and maximum ymax boundaries.

Thus the precision was (ymaxÿymin)/2N. The values

ymin=ÿ 2.5, ymax=2.5 and N= 6 were used.

The selection of a parent was done with a tourna-

ment technique. With this technique, all chromo-

somes have equal chances to compete for becoming

a parent and the ®tter of any two becomes a parent.

Elitism was allowed, that is the best parent repro-

duced in each generation. One child per pair was

allowed and 5 members were retained in the popu-

lation after each generation. To preserve the diver-

sity in the population, the individuals similar to

many other individuals were punished before the

tournament by decreasing their ®tness value, and

individuals di�erent from other were rewarded by

the ®tness increase. The reward and punishment

technique was the multidimensional phenotypic

sharing scheme with a triangular sharing function

(Goldberg, 1989). Number of generations was

10000.

Figure 1. Semivariograms of 100 random ®elds generated
with genetic algorithm (I) and with sequential Gaussian al-
gorithm (II); (A) all semivariograms, (B) average semivar-
iograms with standard deviations as error bars. Line

shows expected semivariogram.*E-mail: carroll@uxh.cso.uiuc.edu
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The crossover was uniform and the allele

exchange between parents happened in each bit pos-
ition with the probability equal to 0.9. Mutations
occurred with probability 0.04.

The ®tness criterion was the inverse value of the
sum of squared di�erences between calculated and
expected variances at selected number of lags (20)

and between calculated and expected probabilities
for each value to appear. A normal probability dis-
tribution was assumed for the generated values. The
probability function was calculated using the sub-

routine erf and related subroutines from (Press and
others, 1994). The subroutine gamv2 of Deutsch
and Journel (1992) was used to calculate semivario-

grams
Initial seed numbers for the random number gen-

erator to generate initial chromosomes were chosen

randomly from the interval between ÿ32000 and
ÿ1000.
The subroutine sgsim of Deutsch and Journel

(1992) was used to perform sequential Gaussian
simulations for comparison purposes.

RESULTS AND DISCUSSION

We present a typical example that demonstrates
the performance of the GA in comparison with the

sequential Gaussian simulation technique. Random
®elds were simulated on a two-dimensional 10� 10
grid with 10 and 15 m increments in x and y direc-

tions, respectively. The random values were
expected to have normal distribution with zero
mean and unit variance. The random ®elds were

expected to have spherical semivariogram with zero
nugget, unit sill and 80 m radius. Ordinary kriging
was used and 200 m search radius was allowed in
sequential Gaussian simulations.

Semivariograms obtained from one hundred

unconditioned simulations are shown in Figure 1
and 2. The genetic algorithm provided reasonable
correspondence between calculated and expected

semivariograms (Fig. 1IA and IB) The initial seed
number for the random number generator did not
have much e�ect on the performance of the genetic

algorithm. Distributions of the semivariance values
at the same lag value obtained in the hundred runs
were symmetrical and variation in generated values

grew slightly as the lag value increased (not shown).

Figure 2. Probability distribution functions of nodal values in random ®elds simulated with genetic al-
gorithm (A) and with sequential Gaussian algorithm (B).

Figure 3. Probability distributions of nodal values in 100
random ®elds generated with genetic algorithm. Each
curve shows distribution of values generated in particular

node.
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The sequential Gaussian simulations followed the

expected semivariogram (Fig. 1IIA and IIB), but

the scatter was signi®cantly larger than that for the

genetic algorithm. For the sequential Gaussian al-

gorithm, deviations from the expected semivario-

gram grew as the lag increased and distributions of
the variances at the same lag were skewed with

large values appearing more seldom than small

ones. The skewness increased as the lag increased

(not shown). Average semivariograms were close to

the expected one for both algorithms (Fig. 1IA and

IIB).

Probability distribution functions calculated from

100 nodal values are shown in Figure 2. The genetic

algorithm (Fig. 2A) provided the distributions close

to the expected normal N(0, 1). Some discrepancy is
observed at the tails of the distributions. This is re-

lated to the assumed range {ÿ2.5, 2.5} of the gener-
ated values. Sequential Gaussian simulations

(Fig. 2B) yielded a wide range of distribution func-

tions that were scattered around the expected N(0,

1) and the range of deviations was larger than in

the random ®elds simulated with the genetic algor-

ithm.

The important requirement for the genetic algor-

ithm was the ability to produce spatial patterns of
generated values that would di�er from one realiz-

ation to another. We had randomly chosen ®fteen

nodes of the grid and plotted distribution functions

of random values that were obtained from the hun-

dred runs in each of the nodes. The results are

shown in Figure 3. They demonstrate that nodal

values randomly change from one realization to

another with the general pattern of distributions

close to N(0, 1). Contour plots of ®ve consecutive

®elds generated with the genetic algorithm are
shown in Figure 4. The plots show how di�erent

the generated ®elds can be as the initial random

seed changes.

The genetic algorithm required a large number of

iterations to produce a random ®eld with statistical

properties close to the expected ones. The rate of
improvement in the performance is illustrated in

Figure 5. Improvement slows down as the number

of iterations grows and in some cases no signi®cant

improvements were achieved during last 7,000 iter-

ations. A signi®cant computer time was required to

Figure 4. Contour graphs of ®ve consecutive random ®elds generated with genetic algorithm.

Figure 5. Performance of genetic algorithm as dependent
on number of generations.

Figure 6. Semivariograms of random ®elds obtained from
sequential Gaussian simulations on 37� 37 grid; (A)
unconditioned simulations, (B) simulations conditioned
with data from simulations generated by genetic algorithm

on 10�10 grid embedded in 37� 37 grid.
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run the GA program: ten thousand generations
took almost 2 h in a 100 MHz PC. Since it is fre-

quently necessary generate random ®elds on much
more dense grids, the computer resources may pre-
sent an impediment in the use of the genetic algor-

ithm to generate random ®elds because there is no
a priori knowledge about the convergence rate.
It is known that the performance of the sequen-

tial Gaussian algorithm can be improved with the
use of data conditioning (Deutsch and Journel,
1992). We experimented with combining the two

techniques. The genetic algorithm was used to gen-
erate a random ®eld on a 10�10 grid mentioned
previously and a sequential Gaussian algorithm was
used to generate the ®eld in the grid 37�37 where

the distances between grid points were 4 times less
than in the old grid and the new grid was embedded
in the old grid. Results are shown in Figure 6. The

conditioning improved the performance of the
sequential simulator as was expected. The semivar-
iograms of the generated ®elds were much closer to

the expected ones than without the conditioning.
Both the described numerical experiments and

other experiments (not shown here) led us to the

conclusion that genetic algorithms can be useful
tools in generating random ®elds with preselected
spatial dependencies. When computer time becomes
a limitation, a hybrid ®eld generator can be used

that will generate the ®eld on a coarse grid with the
genetic algorithm and then generate the ®eld on a
re®ned grid using conditioned simulations with

sequential Gaussian algorithm.
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